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The  application  of  at-line  NIR  transmittance  spectroscopy  on  supernatant  samples  from  Chinese  Hamster
Ovary  Cells  (CHO)  based  monoclonal  antibody  (Mab)  cultivation  processes  spanning  several  scales  from
2.5  L  to 1000  L,  cell-lines  and  development  years  is  described.  The  collected  and  preprocessed  spectra
were  used  to  do  process  state  estimation  and  to  obtain  several  culture  parameters.  Multivariate  process
trajectories  were  computed  from  NIR  spectra  acquired  at-line.  These  were  used  to enhance  process  under-
standing  across  different  scales  up  to industrial  scale,  assess  batch-to-batch  variability,  and  examine  the
t-line NIR spectroscopy
onoclonal antibody cultivations

AT
cale-independent models
ontinuous  improvement

relative  importance  of  different  sources  of  process  variability.  Many  parameters  of  interest  in  industrial
cell  culture,  like  nutrient  or  product  concentrations  can  be reliably  estimated  by  NIRS  with an  accuracy  of
15%  or  better,  compared  to  reference  methods  General  calibrations  (scale  and  cell-line  independent)  are
valid  across  a  range  of process  conditions  and  different  feed  regimes.  The  proposed  approach  is  therefore
applicable  throughout  process  development  as  well  as  to existing  large-scale  validated  CHO  bioprocesses
for  continuous  improvement.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

Process analytical technology (PAT) involves the combined use
f in-process monitoring techniques including chemometrics, mul-
ivariate data analysis and modeling, process and multivariate
ontrol, supervision and diagnosis [1]. The perspective taken in PAT
s that of the process (not the sample’s or that of a single param-
ter over time), while Quality by Design (QbD) is about a wider
ontext and is product-centered. The ultimate goal of QbD requires

 high-level of process knowledge and understanding, which can
nly be realistically obtained and dynamically updated throughout

 product’s life-cycle, through PAT [2].
Monitoring is at the core of PAT and is done preferably

n situ or at-line on whole samples by multi-parametric meth-
ds. Many spectroscopies are multi-parametric and enable several
arameters to be measured on the same sample simultane-
usly. That has obvious measurement benefits (e.g., lowered cost

er parameter), and more significantly it can highlight corre-

ations among different parameters of a sample (e.g., makes
toichiometries between substrates and products more evident)

∗ Corresponding author.
E-mail  address: christian.hakemeyer@roche.com (C. Hakemeyer).

039-9140/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2011.12.042
which can be exploited for increased process state estimation and
understanding.

Several reports on bioprocessing of small and large molecules
have discussed the feasibility of different spectroscopies as mul-
tiparametric monitoring techniques. The first reports on the
application of near-infrared spectroscopy (NIRS) to bioprocess
monitoring appeared in the 1980s by Karl Norris – the founding
father of modern NIRS – who  described its use in the quantitative
analysis of solid-state fermentations [3]. The first accounts of NIRS
in submerged cultivations for small molecules were described in
the 90s, first to monitor ethanol in yeast fermentations [4], then
fungi cultivations [5] followed by industrial demonstrations in bac-
terial systems shortly after [6,7]. However, for larger biomolecules
made by mammalian cell platforms the interest in NIRS started a
bit later, but has since been gaining momentum. Harthun et al.
[8] described the determination of a recombinant protein in ani-
mal cell culture supernatants, while [9–11] initiated the use of
NIRS in Mab  cultivations as a multi-parametric monitoring tech-
nique. The use of NIRS as a process-fingerprinting technique was
demonstrated in small molecule biomanufacturing by Rodrigues

et al. [7] and for proteins by Henriques et al. [12]. When used to
establish a process-fingerprint throughout time the intrinsic abil-
ity of NIRS to capture the effects of several chemical and physical
attributes of a sample is used. Instead of developing calibrations
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o describe the trajectories of each attribute, the entire NIR spec-
rum is used through multivariate projection methods (e.g., PCA,
rincipal component analysis) to obtain a batch trajectory contain-

ng the combined effect of all measurable attributes. This approach
s very interesting for process supervisory control (e.g., batch-
o-batch analysis), process optimization and fault detection and
iagnosis.

The use of different PAT monitoring techniques has been
ecently reviewed in regard to Mab  cultivations by Carvalhal and
aucedo [13] and by Fazenda et al. [14] in relation to the capabili-
ies and limitations of on-line NIRS. NIR spectroscopy is a relatively
nsensitive technique, that is why it is so ubiquitously applied in
he quality control of highly concentrated systems (e.g., the quality
ontrol of bio/pharmaceutical raw-materials). The detection limits
or specific compounds may  be in the range of g/L. However, the
etection limits can be lowered to ca. 100 ppm by exploring the
ffect that such compounds have on several parts of the NIR spec-
ra (e.g., water bands) and specially by lumping all those influences
ogether. Such indirect calibrations can be very accurate (i.e., as
ypical reference analytical methods) and therefore useful as long
s ‘good modeling practices’ are used. Those regard not only the
se of an NIR calibration inside its own design-space, but equally

mportant, the proper use of available chemometrics’ techniques
i.e.,  adequate spectral preprocessing and wavenumber selection,

 parsimonious model structure chosen not over-fitting the avail-
ble data, proper statistical figures of merit used throughout, and
ifferent data sets for calibration and validation steps containing
amples spanning the required design and operating spaces of the
IR calibrations [15]. The challenges and opportunities for PAT in
iomanufacturing are considerable for both new and existing pro-
esses [16].

Here  we report on the use of at-line NIR transmittance spec-
roscopy performed on supernatant samples from Mab  cultivation
rocesses at several scales, from 2.5 L to 1000 L, with different cell-

ines and media, spanning several development years, with the aim
o develop scale and cell-line-independent models to be applied as
rocess supervision and process control techniques (i.e., NIRS used
s a true PAT tool).

.  Materials and methods

.1.  Cell culture

In  the course of this work samples from 3 different scales (2.5 L,
00 L and 1000 L) with four different Chinese Hamster Ovary (CHO)
ell lines (A, B, C, D) in two different media platforms, were ana-
ysed.

Cell line A was culture in media containing soy and rice pep-
ones. Seed train and production cultures were all fed-batch
ultures lasting 3–5 or 14–18 days respectively. For the cell lines B,

 and D the seed train fermentations were all batch cultures, using
 chemically defined medium based on CD-CHO (Invitrogen Corp.,
SA). The production cultures were fed-batch cultures with a cul-

ure duration typically between 10 and 14 days, the basal media and
eed media were also based on CD-CHO with various supplements
e.g., amino acids).

Filtered  supernatant samples for ca. 100 fermentation batches
rom lab, pilot and production scales available were analysed. For
ach of these fermentations, up to 19 samples were collected at
egularly spaced intervals along the cultivation. In total, a more
han 1500 samples were collected and analysed by reference meth-

ds for several parameters, and their NIR spectra acquired. Several
atches were identified as extreme outliers (with very high lever-
ge and significantly out of a 95% Hotelling T2 limit) and therefore
ot used in model development.
ta 90 (2012) 12– 21 13

2.2. Reference analysis

Samples  from production fermentations were analysed by
standard reference analytical methods for product titer, lactate
dehydrogenase activity (LDH), osmolality, cell density and viability,
ammonium, glucose, glutamate, glutamine, and lactate. Standard
reference analysis included BioprofileAnalyzer 300 (Nova Biomed-
ical, Waltham, US) for metabolites, Cell Counter (Roche Innovatis
AG) for cell density and viability, GonotecOsmomat 030 (Gonotec
GmbH, Germany) for osmolality and ProteinA HPLC to determine
antibody titer. Samples were centrifuged to remove cells and debris,
and the supernatants collected and frozen until reference analysis
and spectra acquisition.

2.3.  NIR spectra acquisition

The  spectra were collected using quartz cuvettes (2 mm opti-
cal length) in a Bruker® MPA  FT-NIR system, equipped with a
tungsten–halogen source and an InAs detector. Each spectrum was
an average of 32 scans, with 8 cm−1of spectral resolution recorded
in the wavenumber range of 4999–11,003 cm−1. A reference air
spectrum was  recorded once a day before any sample’s spectra
acquisition (without a cell/cuvette). These blanks captured instru-
ment variations and were useful to correct for deviations from
sample measurement.

2.4.  Data analysis

Data  manipulation including multivariate calibrations with NIR
spectra were performed using PLS Toolbox® version 5.5 (Eigenvec-
tor Research, Inc., USA) for Matlabversion 7.2 for Mac  (Mathworks,
U.S.A.). Principal component analysis (PCA) and multiway-PCA
(MPCA) were used for sample and batch classification, particu-
larly to obtain process trajectories directly from spectral data. PLS
modeling with contiguous block cross-validation was adopted for
all quantitative regression models. Cell culture supernatant spec-
tra were pre-processed by calculating second derivatives, using
a second order Savitzky–Golay algorithm plus mean-centering as
implemented in Eigenvector’s toolbox [17,18]. A procedure based
on i-PLS [19] also implemented on that toolbox was  used to search
for the spectral regions that gave the lowest cross-validation errors
during calibration. The i-PLS algorithm divides the spectra into pre-
defined intervals and then develops calibration models based on
those intervals followed by validation.

In our work we  have done the i-PLS search on pre-processed
spectra with an automatic forward search using an interval width
of 25 points for all models except glucose which required 33 points
(i.e., 25 × 8 or 33 × 8 wavenumbers width). The maximum latent
variables (LVs) number was set at 10. Those choices resulted from
a comprehensive search of parameters done a priori for the stud-
ied system. We  have also checked the i-PLS wavenumber regions
selection against the VIP (variable importance plot) scores provided
by the same software package, as VIP is normally more broadly
available than i-PLS in chemometrics’s packages. In general both
selection strategies had a good agreement. In the few cases for
which i-PLS selected wavenumbers gave VIP scores with an impor-
tance below the usually accepted unity threshold, an attempt to
use the VIP selection regions always resulted in inferior predictive
ability when compared to i-PLS.

The data set was divided in two sets: the first was  used for model
development and the second for external validation. The split of
available samples between calibration and validation sets was  per-

formed by means of the SPXY algorithm – subset partitioning of X
and Y spaces [20]. The SPXY procedure ensures that the calibration
set covers all sources of variability in data and that the validation
set is within the variation range for both spectral (X-space) and/or
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ig. 1. Process trajectories (signatures) for 22 Mab  cultivations at 1000 L, as describ
upernatant spectra (samples clustered by fermentation day: F1–F18).

nalytical data (Y-space). The calibration set contained ca. 2/3 of
he available number of samples. As samples and not entire batches
ere selected for calibration or validation, three batches were com-
letely set aside in order to truly challenge the predictive ability of
he models in not only new samples (as in validation) but on whole
ew batches. Performance of calibration models was assessed com-
uting the root mean square errors of validation and prediction (i.e.,
MSECV and RMSEP) and the respective correlation coefficients, R2,
etween predicted and measured values.

. Results and discussion

Three  major questions are addressed in this work: (1) how much
nformation can NIR spectroscopy capture from Mab  cultivations
upernatant samples, (2) how accurate are the predictions and (3)

ow general are these findings?

Regarding  the first question we are interested not only in a
ulti-parametric assessment of NIRS but on being able to define

rocess trajectories (i.e., process-signatures or fingerprints) from

ig. 2. Time profiles of different culture parameters, showing a high degree of auto-corre
elations of different parameter profiles).
PCA of (a) 8 quality attributes measured off-line by reference methods, and (b) NIR

consecutive  spectra of at-line supernatant samples. Of special inter-
est within this work is to evaluate how general the NIRS approach is
and if reasonably accurate general calibrations can be developed to
explore different cell-lines, feeding-strategies, media-formulation
and process scales, without the need to have specific calibrations
(e.g., of scale or cell-line).

3.1.  How much information can NIR spectroscopy capture?

Several process parameters (e.g., temperature or pH) and qual-
ity attributes (e.g., culture viability or metabolites) are routinely
measured in cell cultivations both in development and routine
manufacturing. Most process parameters are measured on-line
automatically and stored into a DCS computer (distributed control
system). Generally, most quality attributes are measured off-line

taking samples and laboriously analyzing them with different
bench instrumentation. Results are often being known only
with delays of several days. Relating inputs to outputs is often
done only retrospectively when several batches are available. An

lation (monotonically increasing/decreasing profiles) and cross-correlation (inter-



C. Hakemeyer et al. / Talanta 90 (2012) 12– 21 15

Fig. 3. NIRS calibrations for several culture parameters in supernatant samples, used to monitor Mab  fed-batch cultivations at 1000 L scale and cell line A. (Open squares (�)
samples used for calibration; closed squares (�) validation samples.)
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ig. 4. NIR predicted concentration profiles (closed symbols) based on supernatant
alibration development, versus the off-line reference values (open symbols).

lternative would be to investigate to what extent an at-line NIRS
rocedure could be used to capture a sample’s main characteris-
ics and from the spectra alone without any calibration derived
rocess-signatures. Such average trajectories and associated upper
nd lower control limits would establish a region of nominal
peration. Process excursions away from the average trajec-

ory and out of pre-defined warning and control limits would
ndicate the need for control actions to be taken (e.g., tak-
ng a sample for off-line analysis by reference methods for
onfirmation).

able 1
eneral NIR calibrations: multiple process scales, cell-lines and operating conditions.

Parameter LV Range (n.u.) Accuracy reference assays RMSECV (n

Product 3 9.7–426.8 ±20% 25.3 

Glucose  5 5.1–206.0 ±10% 17.2 

Glutamate  3 3.7–329.1 – 25.8 

Glutamine  3 6.6–301.9 – 35.1 

Lactate 3  11.2–320.7 ±15% 15.4 

Osmolality  3 72.4–161.1 ±15% 3.7 
ra collected at-line for a 1000 L scale fed-batch cultivation (cell line A) not used in

Using historical data from 22 fed-batch cultivations (cell line A)
at 1000 L scale with peptone containing media under similar con-
ditions (all except raw-material lots), NIR spectra were obtained
at-line of supernatant samples taken once a day. The PCA score
plot of the time-profiles for 8 of the quality attributes available
(Fig. 1a) is compared with the MPCA (multi-way PCA) score plot

of the NIR spectra available (Fig. 1b). The MPCA procedure unfolds
a 3D array (NIR spectra × process time × cultivation run) into a 2D
array (stacking the cultivation runs as they are reasonably simi-
lar to each other) and performs a PCA on the resulting 2D array.

.u.) RMSEP (n.u.) (VAL) R2 (VAL) RMSEP (n.u.) (NB) R2 (NB)

22.1 0.94 24.8 0.94
13.2 0.85 16.5 0.84
33.8 0.90 33.3 0.92
35.2 0.80 42.9 0.79
15.7 0.96 20.8 0.97

3.9 0.96 5.2 0.95
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ig. 5. Calibration design-space (2.5 L, 100 L and 1000 L scales) in the PCA space (left
alibration samples (circles) and validation samples not used in model developmen

ig. 1 shows that the trajectories (process-signatures) described
y 8 quality attributes considered together, obtained by laborious
nd expensive analytical procedures, resemble well that obtained
y the NIR spectra obtained in a few minutes next to the process.
his is a significant result indicating that a process state estima-
ion is done equally well through NIRS as with all other quality
ttributes (lactate dehydrogenase activity, osmolality, cell viabil-
ty, ammonium, glucose, glutamate, glutamine and lactate). This
an be done for existing processes as the at-line spectra acquisi-
ion procedure does not interfere with the GMP  containment and
nvironment.

The process pattern can be split into two distinct phases, before
nd after the continuous fresh media feeding is started (Fig. 1a and
). In the first phase (until about sample F4) PC2 captures the signif-

cant process dynamics in the growth phase (different samples for

ame batch over time) as well as batch-to-batch variability (differ-
nt batches at same sampling time). In the following less dynamic
ed-batch phase (Fig. 1a and b), changes in PC2 are reverted and

ig. 6. NIR model for glucose monitoring valid across development and manufacturing sc
ot  used in calibrating the model is reported (VAL), as well as the accuracy for entire cult
of specific pre-process wavelength regions (right plot) indicating samples available:
ares).

decelerate  (a smaller change in PC2 scores from F5 to F18 than
from F1 to F4); the drift through PC1 over process time is unaffected
(comparable change in PC1 scores from F1 to F4as from F4 to F8 or
F8 to F12); and batch-to-batch variability is now compounded with
the effect of different raw-material lots used in the feed media for
each batch (Fig. 1b).

The  effect of differences in raw-material lots used in ini-
tial media and feeding formulations are known to be the
main sources of batch-to-batch variability at the same sampling
time [21].

Furthermore, Fig. 1 shows that in both cases two princi-
pal components can describe almost all variance in the data,
79.8% for off-line analytics and 94.8% for at-line NIRS. Apply-
ing wavelength or variable selection based on spectral regions
with a higher covariance with product concentration along the

process, NIR-based process signatures resemble those based on
off-line culture variables (not including the product concentration
profile).

ales and different protocols. The average accuracy (RMSEP) for validation samples
ivations set aside at different scales (NB).
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ig. 7. NIR predicted glucose concentration profiles for each of the different process
ave  been arbitrarily set aside for model evaluation (cf. Fig. 6 RMSEP-NB) and none

.2. How accurate can NIRS be?

The NIRS characteristics that make it a powerful process-
ngerprinting technique in multivariate monitoring of cell
ultivation systems, may  cause problems when developing cali-
rations for specific parameters. The parameters to be monitored
enerally present high correlation as a result of metabolic path-
ays – e.g., converting substrates into metabolites with fixed

toichiometries (Fig. 2). In such circumstances, the calibrations
btained with process samples can only be used to predict samples
ith a similar correlation structure (i.e., samples from similar cul-

ivations) otherwise models will probably fail. In practice this can
e minimized by making the calibrations more general, using sam-
les from batches under different conditions, or by more complex
rocedures involving designed-samples (e.g., spiked or synthetic

amples with a composition defined by a DOE or experimental
esign). From a modeling point of view, a trade-off is gener-
lly obtained between generality (the model is robust and long
erm stable because it can describe different process regimens)
 and cell-lines investigated, compared to reference values measured. These batches
ir samples have been used either for calibration or validation before.

and  accuracy (the model is specific for a particular type of cul-
tivation recipe). Several chemometric techniques exist that can
enhance the information already present in the spectra, but no tech-
nique will be able to compensate for a severe lack of sensitivity or
spectral selectivity [18]. Moreover, since NIRS is sensitive to dif-
ferent sample attributes, the selection of samples to include in a
calibration cannot be limited to samples that only vary in the ana-
lytical parameter being calibrated for. The calibration design-space
should be defined in the NIR spectra domain as they capture other
sources of variability affecting the calibrations and disturbing the
trade-off above. As described before, that can be done if knowl-
edge about the process being monitored is included (e.g., different
process phases should be equally represented in the calibration
data set, therefore process dynamics must be taken into account
in sampling) and using a sample selection algorithm such as SPXY

[20].

Here we  first consider calibration development with samples
under similar cultivation conditions for one CHO cell line (cell
line A) using peptone containing media at the 1000 L scale only to
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ig. 8. Calibration design-space (2.5 L, 100 L and 1000 L scales) in the PCA space (left
alibration samples (circles) and validation samples not used in model developmen

xamine how accurate NIRS could be and evaluate fit-for-purpose.
e then go on to investigate how general the approach is by

onsidering different cultivation conditions.
Fig. 3 summarizes the results obtained for several culture

arameters. Both calibration and validation results are presented.
he accuracy obtained (as measured by the average prediction
rror in validation, RMSEP) is very close to the reference method
sed for each parameter. Also, all models are parsimonious with

 very small number of latent variables. To prevent over-fitting,
odel order or rank was decreased to the minimum so that the

owest RMSECV was obtained. The calibrations developed are capa-
le of describing well not only the trends but the values observed
or all parameters from inoculation to harvest. Some models show
light curvatures and sensitivity problems at extreme values of the
arameter range (e.g., ammonium and cell viability calibrations
hich are indirect calibrations for these parameters), but still are
easonably accurate supervisory models for capturing trends of cul-
ure parameters (Fig. 4). The differences found between predicted
nd measured profiles (Fig. 4) for a 1000 L scale cultivation not used

ig. 9. NIR model for product monitoring valid across development and manufacturing s
ot  used in calibrating the model is reported (VAL), as well as the accuracy for entire cult
of specific pre-process wavelength regions (right plot) indicating samples available:
ares).

in  calibration development are always below 15% of the normalized
scale, corresponding to the reference method accuracy.

3.3.  How general is the approach?

To  show that NIR monitoring on supernatant samples can be
used as a general approach, 67 fermentations of three differ-
ent CHO cell lines, at different scales (lab, pilot, industrial) using
the same chemically defined media, based on CD-CHO, but with
slight changes in formulation with supplemented components, and
also using different feeding and operating strategies at each dif-
ferent scale, were analysed. For illustration purposes only two
parameters are shown in detail – glucose and product – but results
for all other parameters are summarized at the end in Table 1.
To  build the NIR glucose calibration model 320 samples from dif-
ferent scales, CHO cell-lines and cultivation conditions were used.
The most important wavelength regions for a predictive glucose

cales and different protocols. The average accuracy (RMSEP) for validation samples
ivations set aside at different scales (NB).
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ig. 10. NIR predicted product concentration profiles for each of the different pro
atches have been arbitrarily set aside for model evaluation (cf. Fig. 6 RMSEP-EB) a

alibration model were selected with the i-PLS algorithm [19]
nd are highlighted in Fig. 5. Five latent variables were identi-
ed as the optimal rank based on the variance captured by the
odel together with cross-validation errors obtained for each

atent variable (Fig. 6). The NIR predicted glucose concentration
rofiles showed acceptable accuracy in the range investigated
Fig. 7), especially considering that it is a general calibration (i.e.,
cale-independent, cell-line-independent and valid with different
eeds). Fig. 7 shows an off-set between predictions and measured
alues visible for the 100 L scale, most likely because batches from
hat scale are the least represented in the calibration data set.
omparable RMSEPs were obtained for validation samples and for
atches set aside (EB, external batches) thus suggesting a good
redictive ability of the developed model. As expected, the model
btained when several sources of variability are considered (e.g.,

cales, cell-lines, feeding strategies) has a rank that is higher than
he model developed earlier for one scale and cell-line only (cf. Figs.
h and 6).
scales and cell-lines investigated, compared to reference values measured. These
e of their samples have been used either for calibration or validation before.

3.3.2. Product monitoring
The  same strategy was used for the product concentration as

described for glucose. The available samples are different not only
because glucose and product were not measured simultaneously
for all samples, but also because the spectral regions selected
for product and glucose are different and as such the calibration
design-space for each parameter will differ. Nevertheless the cal-
ibration and validation sample-sets for product were defined as
before through the SPXY algorithm, while the most informative
wavelength regions were selected via the i-PLS algorithm (Fig. 8).
A total of 310 samples were employed to build the NIR product
calibration model. Three latent variables were identified as opti-
mal (Fig. 9). The three product profiles predicted for batches not
used before, show a good track of main trends and are reasonably
accurate. As before model rank was increase by 1 when consid-

ering multiple scales, cell-lines and feeding strategies. Again for
the 100 L scale, perhaps because it is not sufficiently represented
in the calibration design-space, the predictions of product titers
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owards harvest are less accurate than for the other two process
cales (Fig. 10).

In  general, a very good agreement was found between spectral
egions selected by i-PLS and VIP. As VIP is more readily avail-
ble in chemometrics’ packages in Figs. 5 and 8 we show them
nstead. In the few cases in which i-PLS selected wavenumbers with

 VIP below the usually accepted threshold of 1, the use of the VIP
elected wavenumbers instead of the i-PLS ones always resulted in
nferior predictive ability.

Table 1 summarizes the figures of merit for all parameters for
hich general models were developed (i.e., scale-independent,

ell-line-independent, different feeding strategies). Considering
he data set properties the models achieved are quite acceptable
or process supervision (Table 1). It was not possible to develop
ccurate scale-independent models for LDH and ammonia concen-
ration, most likely due to spectral selectivity issues. Moreover, a
cale independent model for cell viability was not accomplished
ue to the lack of variability in the Y range for most batches consid-
red for developing general models – for most samples the range
f variation is within 95–100%. Nevertheless, accurate scale spe-
ific models are achievable, as shown previously. The robustness
nd general validity of the models achieved show that they were
orrectly developed and can be used in routine to supervise and
ontrol Mab  cultivations. Most of the parameters of interest can
e reliably estimated by NIRS, using defined wavelength regions,
ith an accuracy of 15% or better, compared to reference methods.
ccasional fine-tuning of the models might be needed if cell-line,

aw materials or process conditions change significantly (i.e., if one
ttempts to use the calibrations out of their own design-space).

 more balanced representation of each individual process scale
hould be sought in order to obtain better models; that balance
ay not come only from having the same number of samples for

ach scale but in having samples from each scale of equal leverage
n the design-space (i.e., each scale should contribute with a similar
ariance to the design-space).

.  Conclusions

The experience gathered in the application of NIR transmittance
pectroscopy on supernatant samples from a Mab  cultivation pro-
ess spanning several scales from 2.5 L to 1000 L, CHO cell-lines and
evelopment years was described. The proposed approach demon-
trates that NIR monitoring carried out at-line on samples already
aken for reference methods analysis, (1) is very effective in replac-

ng in-process monitoring of some critical process parameters by
eference methods, (2) enables batch trajectories as defined by
ultiple culture parameters to be computed, (3) can be used to

o guided sampling (i.e., near harvest or to investigate a deviation

[

[

ta 90 (2012) 12– 21 21

from  the nominal trajectory by established bioanalytical methods)
and (4) as such has potential in implementing process corrections
or even control strategies (e.g., feeding). The proposed approach
is applicable throughout process development as well as to exist-
ing large-scale validated CHO bioprocesses, as it does not require
more complex and expensive set-ups (like in situ, on-line probes
and process equipment are not needed), and is capable of sup-
porting continuous improvement efforts on legacy non-QbD Mab
manufacturing processes as well as new QbD-based processes.

References

[1] FDA, U.S. Department of Health and Human Services, Food and Drug Adminis-
tration, 2004.

[2] J.C. Menezes, Process Analytical Technology and Quality by Design in Biopro-
cess Development and Manufacturing, in: M. Moo-Young (Ed.), Comprehensive
Biotechnology, in: A. Moreira (Ed.), Industrial Biotechnology, vol. 3, 2nd ed.,
Elsevier, 2011, pp. 501–509.

[3] R.W. Silman, L.T. Black, K. Norris, Biotechnol. Bioeng. 25 (1983) 603–607.
[4] A.G. Cavinato, D.M. Mayes, Z. Ge, J.B. Callis, Anal. Chem. 62 (1990) 1977–1982.
[5] S. Vaidyanathan, G. Macaloney, J. Vaughn, B. McNeil, L.M. Harvey, Crit. Rev.

Biotechnol. 19 (1999) 277–316.
[6] S.A. Arnold, R. Gaesakoo, S. Vaidyanathan, L. Matheson, P. Mohan, J.W. Hall, L.M.

Harvey, B. McNeil, Biotechnol. Bioeng. 80 (2002) 405–413.
[7] L.O. Rodrigues, L.M. Vieira, J.P. Cardoso, J.C. Menezes, Talanta 75 (2008)

1356–1361.
[8]  S. Harthun, K. Matischak, P. Friedl, Anal. Biochem. 251 (1997) 73–78.
[9] M.R. Riley, M. Rhiel, X. Zhou, M.A. Arnold, Biotechnol. Bioeng. 55 (1997)

11–15.
10] M.R. Riley, C.D. Okeson, B.L. Frazier, Biotechnol. Prog. 15 (1999) 1133–1141.
11] M. Rhiel, M.B. Cohen, D.W. Murhammer, M.A. Arnold, Biotechnol. Bioeng. 77

(2002) 73–82.
12] J.G. Henriques, S. Buziol, E. Stocker, A. Voogd, J.C. Menezes, Adv. Biochem. Eng.

Biotechnol. 116 (2010) 73–97 (Biotechnology Series), Springer.
13] A.V. Carvalhal, V.M. Saucedo, in: C. Undey, D. Low, J.C. Menezes, M.  Koch (Eds.),

Process Analytical Technology Applied in Biopharmaceutical Process Devel-
opment and Manufacturing: Enabling Tool for Quality-by-Design, Taylor &
Francis, 2011, pp. 94–126, Chapter 6.

14] M.L. Fazenda, L.M. Harvey, B. McNeil, in: C. Undey, D. Low, J.C. Menezes, M.
Koch (Eds.), Process Analytical Technology Applied in Biopharmaceutical Pro-
cess Development and Manufacturing: Enabling Tool for Quality-by-Design,
Taylor & Francis, 2011, pp. 165–178, Chapter 9.

15] J.C.  Menezes, A.P. Ferreira, L.O. Rodrigues, L.P. Braı̌s, T.P. Alves, in: S. Brown,
R. Tauler, B. Walczak (Eds.), Comprehensive Chemometrics, vol. 3, 2010, pp.
313–357.

16] M. Molony, C. Undey, in: A.S. Rathore, R. Mhatre (Eds.), Quality by Design for
Biopharmaceuticals: Principles and Case Studies, Wiley, 2009, pp. 211–254,
Chapter 12.

17] T. Naes, T. Isaksson, T. Fearn, T. Davies, A User Friendly Guide to Multivariate
Calibration and Classification, NIR Publications, 2002.

18] C.E. Miller, in: K.A. Bakeev (Ed.), Process Analytical Technology, 2nd ed., Wiley,
2010, pp. 353–438, Chapter 12.

19] L. Norgaard, A. Saudland, J. Wagner, J.P. Nielsen, L. Munck, S.B. Engelsen, Appl.
20] R. Galvao, M.  Araujo, G.E. Jose, M.J. Pontes, E. Silva, T.C. Saldanha, Talanta 67
(2005) 736–740.

21] G.E. Jose, F. Folque, J.C. Menezes, S. Werz, U. Strauss, C. Hakemeyer, Biotechnol.
Prog. (2011) 27, doi:10.1002/btpr.638.


	At-line NIR spectroscopy as effective PAT monitoring technique in Mab cultivations during process development and manufact...
	1 Introduction
	2 Materials and methods
	2.1 Cell culture
	2.2 Reference analysis
	2.3 NIR spectra acquisition
	2.4 Data analysis

	3 Results and discussion
	3.1 How much information can NIR spectroscopy capture?
	3.2 How accurate can NIRS be?
	3.3 How general is the approach?
	3.3.1 Glucose monitoring
	3.3.2 Product monitoring


	4 Conclusions
	References


